
APPENDIX A

The Mathematica code to calculate the dependence of film color on thickness is

reasonably succinct, and I shall therefore include it for reference. The code which

defines to first order the reflected intensity from a thin film is (see equation (6.8))

Ir[λ , t , θ] := 4 Ii R Sin

[
2π

λ
µ h Cos[θ]

]2
(6.11)

Since we are not interested here with the specific magnitude of the reflected intensity,

but only in a comparison between the intensities of different wavelengths, we set the

reflectance R to 1. We also approximate the index of refraction of the solution as that

of bulk water,

R = 1;µ = 1.33; (6.12)

The response of the various opsins to light is then approximated by

k[λ , j] :=
1

σ
√
π
Exp

[
−
(
λ − λc[[j]]

σ

)2
]

(6.13)

where

σ = 30 ∗ 10−9; (6.14)

denotes the width of the response curve in meters and

λc = {575, 535, 445} 10−9; (6.15)

210

holds the peak response wavelengths of the red, green, and blue opsins, respectively.

Calculation of the response to uniform white light is achieved by simply setting the

incident intensity Ii constant. An alternative is to construct an appropriate form for

the incident light from known atomic emission spectra. We shall use sodium as an

example due to its relative simplicity,

sodiumlines =

{{3302, 1.2}, {5890, 80}, {5896, 40}};

σlw = 6 ∗ 10−9; (6.16)

where the first term in each pair denotes the wavelength in angstroms and the second

term the relative intensity. We also define a line width σlw which is set to the

smallest value that will yield reliable results during numerical integration. The actual

spectrum is then constructed by mapping a Gaussian to each of the spectral lines and

summing the result,

Ii = sodium = N[

Plus@@

(
#[[2]]
σlw

√
π
Exp

[
−
(
λ − #[[1]] ∗ 10−10

σlw

)2
]
&

/@ sodiumlines)

]; (6.17)

Determination of the relative contributions to the color from each of the opsins is

accomplished by numerical integration over the visible spectrum for each of the ocular

211

response curves,

GetColor[t , θ] :=

Table[

NIntegrate[k[λ, j] Ir[λ, t, θ],

{λ, 300 ∗ 10−9, 700 ∗ 10−9}],

{j, 1, 3}] (6.18)

The first term of the resulting three element list corresponds to red, the second to

green, and the last to blue. The numbers, however, are not, as yet, scaled to the [0, 1]

range required by the RGBColor function. This is to allow for different methods of

normalization. For example, if the relative intensity between color bands is of primary

importance, the RGB values for the entire thickness range can be rescaled by the

maximal value of the entire set (useful for visualizing results from a monochromatic

light source). Or, if an accurate determination of color is most important, each RGB

triplet can be rescaled by its individual maximum (particularly useful for observation

under nearly white light, or a complex spectrum such as xenon).

T[x] := Transpose[x] (6.19)

We first make a kind of shorthand notation for a function we will use repeatedly,

then set the thickness range and resolution for which we wish to calculate the color

of reflected light,

tmin = 10−8; tmax = 6 ∗ 10−6; tstep = 10−8; (6.20)

212

The result is placed in a table which contains both the color information and a suitable

Graphics object,

colors = Table[

{ GetColor[t, 0],

Rectangle[{t, 0}, {t+ tstep, 1}]

},

{t, tmin, tmax, tstep}

]; (6.21)

The final output involves applying the RGBColor function to the color triplets after a

suitable rescaling, and then display using Show,

Show[

Graphics/@ T[{

Apply[RGBColor,
T[colors] [[1]]

Max[T[colors] [[1]]]
, {1}],

T[colors] [[2]]

}],

Frame → True

] (6.22)

213

